Introduction

In cases of severe posterior bone atrophy, Straumann Pro Arch is a solution that helps achieve fixed restoration for the patient. Straumann Guided Surgery and the coDiagnostiX planning software (Dental Wings) can produce predictable results in cases of complex bone anatomy or when implants are placed such to obtain planned multi-unit angulation. With CARES Visual (Straumann), we can obtain a precise framework fit on the original components, which is fundamental for the final restoration.

Initial situation

A 70-year-old female patient in good general health presented to a private practice with an edentulous maxilla and partially edentulous mandible seeking a full-mouth rehabilitation. Conditions in the maxilla allowed satisfactory retention of a new complete denture, which was accepted by the patient, while the mandible exhibited severe atrophy of the hard- and soft-tissue in the posterior region and hopeless teeth in the frontal area, as observed clinically and confirmed by a CT scan (Fig. 1).

Treatment planning

Bone quality in the mandible allowed placement of four implants in the anterior region, with both lateral implants tilted, and did not allow for any implants to be placed in the distal area. For these reasons, the Pro Arch concept was chosen as a treatment modality. As bone condi-
tions in the mandible were very difficult in terms of correct implant placement, it was decided to place them with the help of a surgical guide.

The planning included several steps. First, the hopeless teeth in the mandible were to be extracted, followed by delivery of a complete immediate denture, as they did not offer any stable support for a surgical guide. Six weeks later, owing to the lack of keratinised tissue in the premolar regions, apical repositioning and a free gingival graft were performed (Fig. 2).

After 1.5 months, the denture was relined with a mixture of barium sulphate and resin, transforming the denture into a radiographic stent (Fig. 3). Another CT scan was recorded with the stent in the mouth (Fig. 4). The stone cast of the stent was poured (Fig. 5), giving us the actual clinical picture of the mucosa, and both cast and stent were scanned to obtain their STL files. Using the coDiagnostix planning software, the radiopaque saddle of the stent and the STL scan were matched, which also allowed the stent to be matched with the cast as positive and negative, thus, giving us the...
soft-tissue volume. Implants were planned in a prosthetically driven manner at sites #34, 32, 42 and 44, with corresponding screw-retained abutments (Fig. 6).

Because of an open-flap procedure owing to the lack of keratinised tissue and the placement of long implants (all Straumann BLT Roxolid, SLA implants; 4.1 × 12.0 mm), it was decided to make two surgical guides: first, a mucosa-supported guide only for drilling the template fixation pins (Straumann; Fig. 7); and second, a pin-supported guide for fully guided implant placement (Fig. 8).

The software can be used to choose a screw-retained abutment in implant planning. Also, we can plan abutment placement with the engraving of implant rotation markers on the guide. This planning helps us stop at the right moment in terms of rotation at the very end of implant placement. We planned to convert the denture into an immediate temporary fixed restoration and deliver the final restoration three months after implant placement.

Surgical procedure

On the day of surgery, two impressions were taken: first with the guide for the pins for stable drilling (Fig. 9), then with the existing prosthesis (Fig. 10) for its correct conversion into an immediate restoration. The first mucosa-supported guide was used for drilling the sites for template fixation pins (Fig. 11). Next, the guide was removed, the flap was raised and the second guide was fixed with the pins at the corresponding sites (Fig. 12).
Implant beds were prepared (Figs. 13 & 14) and Straumann BLT implants placed with a torque setting of more than 35 Ncm, following the protocol to allow correct subsequent screw-retained abutment placement (Figs. 15 & 16). Bone around the implants was prepared with bone profilers (Straumann) for the same reason (Fig. 17). The crest was flattened (Figs. 18 & 19), screw-retained abutments were screwed to 35 Ncm (Fig. 20) and covered with healing caps, and the wound was sutured (Fig. 21).

Prosthetic procedure

Provisional restoration

On the same day of the surgery, the existing denture was converted into an immediate temporary fixed restoration by adjusting it on temporary abutments directly in the mouth (Fig. 22), and an impression was taken as a double-check. The restoration was tightened to 15 Ncm (Fig. 23). Ten days later, the sutures were removed, the control CT scan was recorded (Fig. 24) and
the results were assessed with the coDiagnostiX eval-
uation tool.

Final restoration
Two months after the implant placement, impressions
were taken and the precision was checked with a ver-
ification jig (Figs. 25 & 26). The vertical dimension of
the provisional prosthesis was followed when mount-
ing the casts in the articulator (Figs. 27 & 28). The ana-
logue set-up was tried in (Fig. 29), then scanned by the
Straumann CARES 7 series scanner together with the
model. The framework on Straumann Variobase screw-
retained abutments was designed in CARES Visual
following the set-up anatomy (Fig. 30), then milled from
titanium (Fig. 31). The passive fit of the framework was
checked, and it was then veneered with resin with the
denture teeth in place (Figs. 32 & 33). Variobase abut-
ments were cemented into the prosthesis, and the final
restoration was tightened to 15 Ncm (Fig. 34). Screw
holes were closed with PTFE tape and composite.

Treatment outcomes
This case shows how digital technologies help achieve
good results in complex surgical conditions and facilitate
immediate predictable temporisation. It demonstrates
that correct prosthetically driven implant planning results
in a satisfactory final restoration.

Acknowledgements
Alexandr Dolgolaptev (framework) and Vyacheslav Bakaev
(veneering) for performing the laboratory procedures
about

Dr Nikolay Makarov graduated from
the Moscow University of Medicine
and Dentistry in Russia and the
University of Siena in Italy. He obtained
an MSc from the Sapienza University
of Rome in Italy, specialised in dental
surgery at the Moscow University of
Medicine and Dentistry, and was an
ITI Scholar at the University of Geneva
in Switzerland. Dr Makarov is an ITI Fellow and the director
of an ITI Study Club in Moscow. He combines private practice
with doctoral study at the implant prosthetic department at
the Sapienza University of Rome.